Towards Automatic Accuracy Validation and Optimization of Fixed-Point Hardware Descriptions in SystemC

Arnaud Tisserand
CNRS, IRISA laboratory, CAIRN research team
SCAN 2010, September 27–30, Lyon, France

Motivations

In hardware, fixed-point arithmetic is preferred to floating-point:

- smaller operators (circuit cost and static power consumption)
- faster operators (important speedup for addition)
- lower dynamic power consumption
- limited accuracy requirements in most of embedded applications (8 to 24 bits)
- but dynamic range limitation (tradeoff between the datapath width and the number of operand scaling operations)

Accuracy validation:

- Average error analysis (widely used in signal processing) assumption: errors \(\approx\) noise sources [5]
- Maximum error analysis (this work)

Outline

- Motivations
- Used tools
 - SystemC fixed-point support overview
 - Gappa software for error bounds determination/verification
- Developed library
 - Overall description
 - Validation mode (certified error bounds)
 - Optimization mode (operands width reduction under certified accuracy constraint)
 - Experimental results
- Conclusion & future prospects

Typical and Proposed Design Method

HDL: hardware description language (VHDL or Verilog)
CABA: cycle accurate bit accurate (functional validation for logic elements)
SystemC

- set of C++ classes, macros and library used for
 - system-level modeling in hardware and software (co-design)
 - functional verification
 - event-driven simulation of complete systems
 - architectural exploration
 - performance modeling
 - high-level synthesis

- definition, library, documentation and links:
 - defined and promoted by OSCI: the Open SystemC Initiative
 - http://www.systemc.org/

- arithmetic data types (warning: limited synthesis capabilities):
 - integers: ≤ 64 bits words or “arbitrary” precision (512 bits max.)
 - floating-point: IEEE-754 32 bits machine words (float)
 - fixed-point

SystemC Fixed-Point Support

- signed numbers (2’s complement): sc_fixed or sc_fix
- unsigned numbers (radix 2): sc_ufixed or sc_ufix

Format for sc_[u]fixed<wl, iwl, q_mode, o_mode, n_bits>:
- wl total word length
- iwl integer word length
- q_mode quantization/rounding mode
- o_mode overflow/saturation mode
- n_bits number of saturation bits (0 as default)

Template parameters definition time:
- static: sc_fixed and sc_ufixed at compile time
- dynamic: sc_fix and sc_ufix at run time

SystemC Fixed-Point Rounding and Overflow Modes

Quantization/rounding modes (q_mode parameter):
- SC_RND rounding to +∞
- SC_RND_ZERO rounding to 0
- SC_RND_MIN_INF rounding to −∞
- SC_RND_INF rounding to ∞
- SC_RND_CONV convergent rounding
- SC_TRN truncation, default mode
- SC_TRN_ZERO truncation to 0

Overflow/saturation modes (o_mode parameter):
- SC_SAT saturation
- SC_SAT_ZERO saturation to 0
- SC_SAT_SYM symmetrical saturation
- SC_WRAP wrap-around, default mode
- SC_WRAP_SM sign magnitude wrap-around

Gappa Overview

- developed by Guillaume Melquiond
- goal: formal verification of the correctness of numerical programs:
 - software and hardware
 - integer, floating-point and fixed-point arithmetic (±, ×, ÷, √)
- uses multiple-precision interval arithmetic, forward error analysis and expression rewriting to bound mathematical expressions (rounded and exact operators)
- generates a theorem and its proof which can be automatically checked using a proof assistant (e.g. Coq or HOL Light)
- reports tight error bounds for given expressions in a given domain
- C++ code and free software licence (CeCILL)
- publication: ACM Transactions on Mathematical Software [2]
- source code and documentation: http://gappa.gforge.inria.fr/
Gappa Example

Degree-2 polynomial approximation to e^x over $[1/2, 1]$ and format 1Q9:

```plaintext
p0 = 571/512; p1 = 275/512; p2 = 545/512;

3x = fixed<-9,dn>(Mx);

y1 = fixed<-9,dn>(p2 * x + p1);

p = fixed<-9,dn>(y1 * x + p0);

Mp = (p2 * Mx + p1) * Mx + p0;
```

Gappa-0.12.0 result: $([a, b], x(\approx x)_{10, \log_2 x}, xby = x2^y)$:

Results for Mx in $[0.5, 1]$ and $|Mp-Mf|$ in $[0, 0.001385]$:

$|p-Mf| \in [0, 811656739243220271b^{-66}, 2^{-6.50636}]$

Validation Mode

- **SystemC** input
- **g++** produced exec
- **gappa** model
- **devel. library**
- **refine architecture**
- **final report**
- **error bounds**

gappa computes error bounds

- **verification**

Optimization Mode

- **SystemC** input
- **g++** produced exec
- **gappa** model
- **devel. library**
- **refine architecture**
- **final report**
- **error bounds**

gappa computes error bounds

- **optimization process using multiple gappa calls**

SystemC (C++ with restricted template usage) library

- extension (templates) of fixed-point data types:
 - static types `sc_fixed` and `sc_ufixed` for validation mode
 - dynamic types `sc_fix` and `sc_ufix` for optimization mode
- overloading of fixed-point operations:
 - conversion to gappa model
 - arithmetic operations binary: $\pm, \times, \div, \sqrt{}$, unary: $-$
 - shifts: $<<, >>$ (useful for scaling operations)
- add extra informations:
 - operand domain and format
 - approximation information
- specific functions:
 - generate complete gappa model
 - gappa external call
 - read gappa output
 - generate error bounding final report
 - optimization algorithms

A. Tisserand, CNRS–IRISA–CAIRN.
Accuracy Validation and Optimization of Fixed-Point Hardware
Optimization Heuristics

Initial formats assignment:
- propagate output accuracy backwards
- propagate input formats forwards (+ guard bits)

Optimization steps:
- exhaustive search limited to a few operations
- priority lists:
 1. large operators (\times)
 2. small operators (\times by cst, \pm)
 3. almost free operators (shifts)
- accuracy "sensibility" analysis (locally reduce bitwidth and reevaluate accuracy)

Preliminary Experimental Results

- signal processing, multimedia and telecommunication in-house benchmarks
- FPGA implementation (Xilinx small Spartan 3 XC3S400A device, ISE 12.1 tools, medium efforts, area optimization target)
- power estimation based on simulations 10 000 random vectors (high activity)
- relative reduction compared to a standard manual optimization
- validation and optimization process time between 1 s and 2 minutes

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Delay</th>
<th>Area</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>16b FIR</td>
<td>-5 %</td>
<td>-6 %</td>
<td>-9 %</td>
</tr>
<tr>
<td>24b FIR</td>
<td>-7 %</td>
<td>-15 %</td>
<td>-18 %</td>
</tr>
<tr>
<td>8p 16b IDCT</td>
<td>-3 %</td>
<td>-24 %</td>
<td>-31 %</td>
</tr>
<tr>
<td>LDPC decoder</td>
<td>-12 %</td>
<td>-21 %</td>
<td>-42 %</td>
</tr>
</tbody>
</table>

Conclusion & Future Prospects

Current status:
- SystemC library for fixed-point arithmetic with
 - computation of tight error bounds (for numerical validation)
 - operands width optimization under accuracy constraint (for area and power consumption reduction)
 - formal validation of the produced error bounds
- Limitations:
 - Only absolute error
 - No good optimization heuristics for \div and $\sqrt{\cdot}$
 - No link with resource scheduling (several operations mapped on the same operator)

Future work:
- add advanced optimization schemes
- add power consumption constraints in the optimization process
- extension to other tools than gappa (e.g. gappa++)

References
The end, some questions?

Contact:

- mailto:arnaud.tisserand@irisa.fr
- http://www.irisa.fr/prive/Arnaud.Tisserand/
- CAIRN Group http://www.irisa.fr/cairn/
- IRISA Laboratory, CNRS–INRIA–Univ. Rennes 1
 6 rue Kérampont, BP 80518, F-22305 Lannion cedex, France

Thank you